

Affordability, Complexity, and Risk

lumans to Mars

- Do the things you have to do to make the first missions safe and affordable on NASA's budget
- Don't do things you don't have to do (e.g. complex enhancing technologies or features). Keep developing them, to be onramped later after risks of the initial missions have been retired.

Stuff You Really Have to Do

Humans to Mars

- SLS, Orion, and Ground System (they are near flight-ready)
- Deep Space Habitat (industry studies have begun)
- In-Space Propulsion (key decisions to be made)
 - High power SEP (~125 kWe) vs. very high power SEP (~450 kWe)
 - Cyrogenic vs. traditional hypergolic storable propellants
 - You might want to pick the safest and easiest options
- Lander (key decisions to be made)
 - Traditional capsule-type heat shield vs. HIAD
 - Storable vs. cryogenic propellants
 - Fully-fueled MAV (with abort to orbit capability)
 vs. ISRU-fueled MAV
 - You might want to pick the safest and easiest options

Technologies that Probably Aren't Required for the First Missions

- Capable, affordable, and sustainable crewed missions to Mars could be performed without these technologies:
 - In Situ Propellant Production (ISPP)
 - Very high power SEP (>150 kWe)
 - Zero-boil-off cryogenic propellants
- After the first long-stay mission, a funding wedge for new developments should open up to on-ramp enhancing technologies
 - Mars food production might be more important than any of the items above, because that probably has greater value for permanent
 - presence, crew quality-of-life, and morale
 - Indigenous water and oxygen for crews is probably easier and may be more important than making propellants.

Validate the Economics

lumans to Mars

- Which options are lower risk and more cost effective?
 - Only one chemical engine type vs. more than one type
 - In-space, descent, and ascent engines have different requirements for thrust, throttleability, and Isp
 - System costs for making one engine fit all may outweigh the "savings" of only developing one engine, especially if you can use existing engines for some of the applications

RS-72 Engine Thrust = 55.4 kNIsp = 340 s

- Reusability vs. Expendable vs. Repurposing
 - Refueling and refurbishing vehicles in space to send back to Mars requires new technology, specialized support vehicles, infrastructure, and rocket launches. That carries cost and risk.
 - Economics and mission risk should be evaluated before committing to the complexity of reusability for the initial set of missions
 - As an alternative, returned Deep Space
 Habitats could be repurposed for crew
 training in LEO with commercially delivered crews.

Example of Later On-Ramping of New Technology:

Conversion of Capsule Lander MAV from Storable Propellants to Cryogenic ISPP

Note: Keep descent propulsion the same – MMH/MON-15